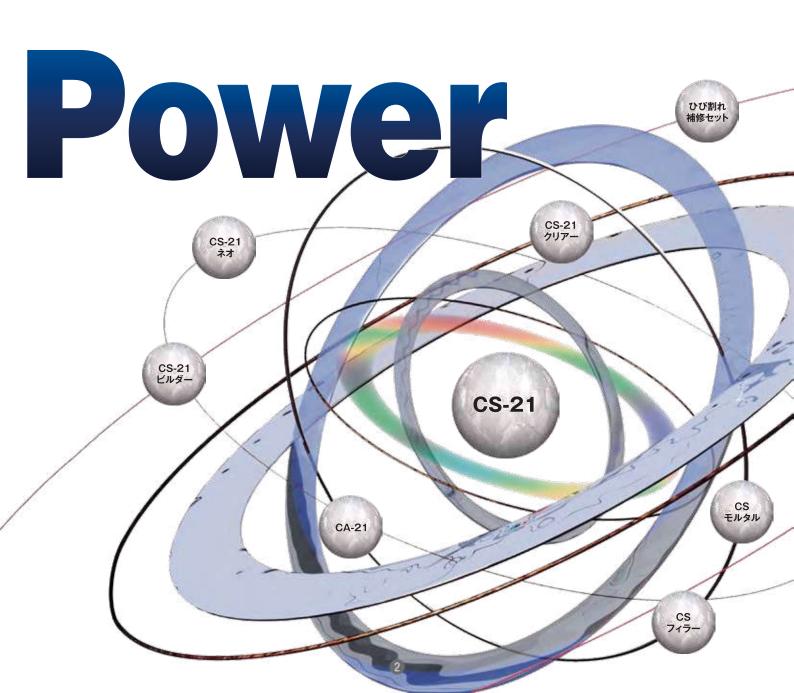


コンクリート改質剤

CS-21シリーズ 製品案内

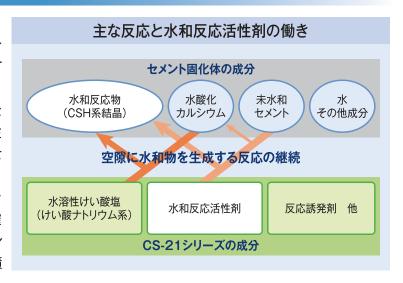
コンクリート構造物の耐久性向上、 ライフサイクルコスト低減に貢献する CS-21シリーズ製品群。

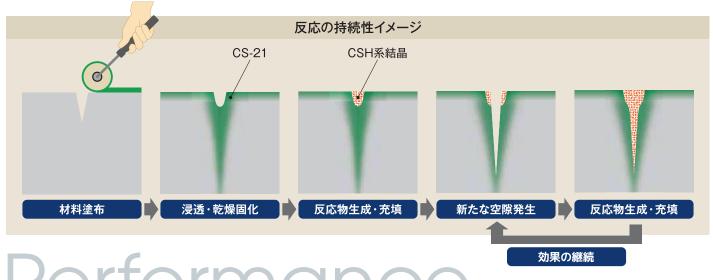
コンクリート構造物は、社会基盤の整備と経済の発展に不可欠です。 その品質向上技術の開発は、従来から課題となっていました。


コンクリートの空隙に浸透して、セメント成分との反応生成物で緻密にするCS-21は コンクリートから染み出す水を、完全に止めたいと願う 現場の創意工夫の中で産声を上げました。

その後、コンクリートの躯体防水あるいは耐久性向上を目的として改良を重ね 現在では様々なニーズに応えながら、常に現場で結果の出せる技と共に CS-21シリーズ製品群は開発され続けています。

●使用目的	●使用材料	●使用用途	●施工方法
躯体防水	CS-21(CSII工法)	駐車場·屋上·地下·水槽防水	
表面保護(新設)	CS-21ネオ CS-21(CSI工法)	品質·耐久性向上対策	・塗布または散布
表面保護(既設)	CS-21ビルダー CS-21 (CSII工法)	予防保全·長寿命化対策	
保護美装(既設)	CS-21+ポリマーセメントモルタル	予防保全·長寿命化対策+美装対策	
ひび割れ補修	CS-21 CS-21ひび割れ補修セット	微細ひび割れ補修 (注入工法の必要がない場合)	塗布/充填
漏水補修	CS-21 CS-21+CA-21 (CS-21SP)	止水 (微粒子セメントや補助剤などと 併用する場合あり)	注入
断面修復	CS-21クリアー+CSモルタル	躯体下地強化+欠損部充填 +充填材表面保護	塗布および充填


Background


けい酸塩系材料の歴史と進化

けい酸塩を使用しコンクリートを緻密にする材料は、 1920年代から北欧、北米、オーストラリア等の国々で、建築・土木コンクリート構造物の防水対策として使用されていました。

しかし、日本では材料だけでは効果の確認ができない、対象コンクリート躯体の品質によって効果が左右されるなど、ごく一部の人にしか評価されていませんでした。

アストンでは1993年に**水和反応活性剤**を開発し、その材料性能を最大限発揮させる独自の施工技術を確立させることで、躯体防水の分野にとどまらず、コンクリート構造物の耐久性向上の分野で、信用と実績を築いてきました。

Performance

ニーズに対応する品質力と技術力

浸透させる 固形分量

コンクリートの空隙内の 充填に必要な固形分を 浸透させる商品開発

劣化した コンクリートと反応

劣化したコンクリートでも 反応し充填する 商品開発

品質と技術の 確保

材料特性を熟知した 技術者による施工体制、 技術教育の実施

反応の 持続性

施工後新たに発生する空隙も 継続的に反応し 充填する商品開発

微細ひび割れの 止水性

漏水している微細ひび割れの 止水を可能にする 商品開発

コンクリートの躯体防水材

CS-21

NETIS:CB-020055-VR 設計比較対象技術 (2017年3月NETIS掲載終了)

コンクリート中のカルシウム成分と反応して、空隙を充填。 駐車場、屋上、地下、水槽などの構造物の躯体防水に最適。

CS-21は、硬化コンクリートに塗布等で浸透させることで、コンクリート中のカルシウム成分等と安定した反応物(CSH系結晶)を生成して、空隙を充填します。

また、未反応の主成分は、乾燥固化後も水分の供給により溶解し反応物を生成して、施工後新たに発生する微細なひび割れ等の空隙を充填します。これらの反応により、ひび割れ深部を含む表層部の空隙を緻密化し、水や各種劣化因子の侵入を長期にわたり抑制します。

■製品概要

外観: 無色透明·液体 主成分: けい酸ナトリウム 比重(密度): 1.24~1.28(g/cm) pH値: 11.3~12.3 乾燥固形分率: 31.5~33.5(%)

■用途

塗布工法/躯体防水、表面保護、打継ぎ部処理、ひび割れ補

修など

注入工法/漏水補修・ひび割れ補修(単独またはセメント系材

料等と併用)

安心の防水10年保証。

駐車場防水工法や屋上防水工法等の新築構造物の場合、10年間保証を行っています。

高濃度の原液のまま使用することで、空隙の充填率を高めます。駐車場・屋上・地下・水槽等の躯体防水に効果を発揮し、施工実績の追跡調査により20年以上の効果持続性が確認されています。

適用にあたっては、水密性の高いコンクリートを造るため、設計者・元請業者・躯体施工業者・防水施工業者の協力が不可欠となります。(詳細については、技術資料「コンクリートの躯体防水」をご参照ください)

躯体を防水体に 耐久性の向上

- ●微細空隙を充填して水密性を向上
- ●自閉効果が継続
- ●劣化因子などの侵入を抑制

意匠を自由に少ない制約

- ●納まりによる制約を受けない
- ●床版の荷重を軽減
- ●外防水、内防水のいずれも 対応可能

工期を 大幅に短縮

- ●短期間で施工が可能
- ●雨天の影響を受けにくい
- ●他工種の工程を 妨げる期間が少ない

少ない経年劣化 管理が容易

- ●コンクリートと同等の耐久性
- ●変状箇所を目視で確認できる
- ●欠陥部の部分補修が可能
- ●再施工が容易

優れた環境性能 高い安全性

- ●環境に影響を与えない
- ●有害物質を含まない
- ●不燃性で延焼がない
- ●水道施設に使用できる

豊富な実績長期にわたる安心

●躯体防水20年以上 100万㎡以上の実績

各種試験結果·認定情報

■防水効果

日本建築学会規格試験(JASS8 T-301(b)透水係数の品質基準)により防水効果が確認されています。

■表面保護効果

土木学会規格試験(JSCE-K571,K572)により吸水・中性化・塩化物イオン浸透・スケーリング・ひび割れ透水・加圧透水抑制効果が確認されています。

■安全性

水道法に基づく厚生省令で規定された試験 (JWWA Z108) の結果、評価基準に適合し、水道水が直接触れるコンクリートに適用可能な安全性が確認されています。

■住宅瑕疵担保責任保険

包括3条確認書により適合可能な住宅瑕疵担保責任保 降会社

- ●株式会社住宅あんしん保証
- ●住宅保証機構株式会社(旧:財団法人住宅保証機構)
- ●株式会社日本住宅保証検査機構(JIO)
- ●株式会社ハウスジーメン
- ●ハウスプラス住宅保証株式会社

新設コンクリートの表面保護材

CS-21 Neo (ネオ)

NETIS:CG-160013-VE 活用促進技術

新設コンクリートの品質・耐久性向上対策に適した、 反応型けい酸塩系表面含浸材。

硬化したコンクリートに塗布し含浸させることで、生成される反応物により表層部を緻密化する、CS-21の基本性能はそのままに、コンクリートへの浸透性を向上させました。

経年後新たに発生する微細ひび割れ等の空隙も継続して充填するため、かぶりコンクリートを長期にわたり健全に保ち、耐久性を向上させます。

■製品概要

外観: 無色透明·液体 主成分: けい酸ナトリウム 比重(密度): 1.10~1.14(g/cm) pH値: 11.0~13.0 乾燥固形分率:15.0~20.0(%)

■用途

新設コンクリート構造物(現場打ち、二次製品)の表面保護など

- ●適用範囲/中性化·塩害·凍害抑制
- ●適用範囲外/ASR·化学的侵食

■表面保護効果

土木学会規準試験(JSCE-K572)により吸水・中性化・塩化物イオン浸透・スケーリング抑制効果が確認されています。

■安全性

水道法に基く厚生省令で規定された試験 (JWWA Z108) の結果、評価基準に適合し、水道水が直接触れるコンクリートに適用可能な安全性が確認されています。

NETIS登録情報(要旨)

技術名称 けい酸塩系表面含浸材 CS-21ネオ 調題 新設コンクリート構造物の表面保護

概要 ①何について何をする技術なのか?

新設コンクリート構造物に対する表面保護を目的とした表面含浸材。

硬化コンクリートに塗布浸透させることで、初期段階では乾燥固形分および反応生成物による表層部を緻密化し、長期的に は未反応の主成分が水酸化カルシウムとの反応を繰り返すことで、微細ひび割れなどの空隙を充填する。

②従来はどのような技術で対応していたのか?

表面含浸工法 (反応型けい酸塩系表面含浸工法)

③公共工事のどこに適用できるのか?

新設構造物のコンクリートの表面保護工

例) 橋梁、トンネル、ボックスカルバート、ダム、建築物など

新規性および期待される効果

①どこに新規性があるのか?(従来技術と比較して何を改善したのか?)

新技術では材料の浸透性を高めることにより工程を

簡素化し、施工性を向上させた。

②期待される効果は?(新技術活用のメリットは?) 材料費の低価格化と施工性を改善したことにより、 工期を短縮しコストを縮減する。

塗布工法概要図

CS-21ネオ塗布 (200g/m³)

既設コンクリートの表面保護材

CS-21 Builder (ビルダー)

NETIS:CG-170009-A

2液混合型の反応型けい酸塩系表面含浸材。 既設コンクリートの長寿命化を実現。

CS-21ビルダーは、既設コンクリートに不足しがちな水酸化カルシウムを主成分とする助剤を主剤に混合して使用する、2液混合型の反応型けい酸塩系表面含浸材です。

混合後も一定時間液体状態を保ち、浸透した空隙内でゲル化し滞留、反応物の生成は継続するため、新たに発生する微細ひび割れ等の空隙も充填し、コンクリ

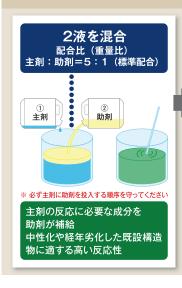
ートの長寿命化を実現します。

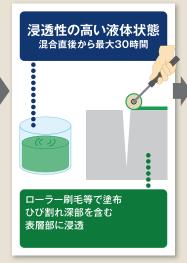
■混合液物性

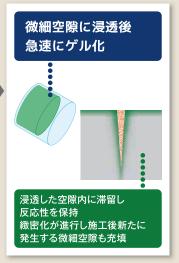
外観:白色または淡桃白色・液体主成分:けい酸ナトリウム(主剤)

水酸化カルシウム(助剤)

比重(密度): 1.18~1.22(g/cm) pH値: 11.0~13.0 乾燥固形分率: 25.0~29.0(%)


■用途


既設コンクリート構造物の表面保護、ひび割れ補修など


- ●適用範囲/中性化·塩害·凍害抑制
- ●適用範囲外/ASR·化学的侵食

CS-21ビルダーの反応イメージ

NETIS登録情報(要旨)

技術名称 2液混合型けい酸塩系表面含浸材 CS-21ビルダー

副題 既設コンクリート構造物の表面保護

概要

①何について何をする技術なのか?

中性化の進行した既設コンクリート構造物に適用する表面含浸材。

コンクリート中および助剤から補給されるカルシウム成分等との反応生成物により表層部を緻密化する主剤に、経年と共に減少する水酸化カルシウムを補給する性能を有する助剤を混合した含浸材を硬化コンクリートに塗布浸透させることで、 微細ひび割れなどの空隙を充填する。

長期的には未反応の主成分が水酸化カルシウムとの反応を繰り返すことで、長寿命化を図る。

- ②従来はどのような技術で対応していたのか?
 - けい酸塩系表面含浸材、補助剤を個別に塗布することによる表面含浸工法
- ③公共工事のどこに適用できるのか?

既設構造物の補修工事におけるコンクリートの表面保護工

例) 橋梁、トンネル、ボックスカルバート、ダム、建築物など

新規性および期待される効果

①どこに新規性があるのか?(従来技術と比較して何を改善したのか?)

2液を別々に塗布するのではなく、混合した含浸材を塗布する ものとしたことにより工程を簡素化し、施工性を向上させた。 混合直後の低粘度で浸透性の高い状態で塗布し含浸させ、混合 後は一定時間経過するとゲル化するため、空隙内への滞留性に 優れている。

②期待される効果は?(新技術活用のメリットは?) 2液混合型として施工性を改善したことにより、工期を短縮しコストを縮減する。

塗布工法概要図

2.CS-21ビルダー塗布 100g/m 1.CS-21ビルダー塗布 200g/m

1.05-21ビルター塗布 200g/III

コンクリートの漏水対策

CS≥=

躯体防水材CS-21のスプレータイプ 木コン部処理や、貫通部材打ち込み箇所に散布し、防水性を向上。

CSミニを硬化したコンクリート表面に散布(塗布)し浸透させると、コンクリート中のカルシウム成分等と安定した反応物(CSH結晶)を生成して微細空隙を充填します。

■製品概要

外観: 無色透明·液体 主成分: けい酸ナトリウム 比重(密度): 1.24~1.28(g/cm³) pH値: 11.3~12.3 乾燥固形分率: 31.5~33.5(%)

■用途

サッシのモルタル詰め、開口部の穴埋め 貫通部材打ち込み前の処理など

ひび割れ補修材

CS-21 ひび割れ補修セット 活用促進技術 (2022年3月NE

NETIS:CG-110003-VE 活用促進技術 (2022年3月NETIS掲載終了)

コンクリートのひび割れを補修し、美観を回復させるセット。 3色のパテがあり、補修跡が目立たないように補修が可能。

CS-21クリアーは、ひび割れ内部を緻密化し、水および各種劣化因子の侵入を抑制します。 CSパテは、コンクリートに近い無機質の乾燥硬化型パテ材です。微細なひび割れに擦り込むことで充填し、補

修跡がほとんど目立たないように美観を回復することができます。

■製品概要 CS-21クリアー ■製品概要 CSパテ

外観: 無色透明液体状 外観: 灰色ペースト状

主成分: けい酸ナトリウム 主成分: 炭酸カルシウム 酸化ケイ素

 比重(密度): 1.05以上(g/cml)
 ケイ酸リチウム

 pH値:
 11.3以上
 比重(密度): 1.9以上(g/cml)

pH値: 10.5以上

■用途

注入工法対象外のひび割れ補修、ひび割れ注入時のシール材など

コンクリート改質補助剤

CA-21

既設コンクリートの止水等に威力を発揮。 CS-21と混合として使用する補助剤。

時間の経過と共に減少していくコンクリート中の水酸化カルシウム。

その既設コンクリートに対し、水酸化カルシウムを主成分とするCA-21を補助剤としてCS-21と混合して使用します。

注入工法・ひび割れ補修用の補助剤です。

■製品概要

外観:白色または淡桃白色・液体主成分:水酸化カルシウム比重(密度):1.02~1.06(g/cm)pH値:12.8~13.8

■用设

注入止水材、ひび割れ補修材など

下地処理·表面保護材

CS-21 Clear (クリアー)

コンクリート表面を緻密化させ、ポリマーセメントモルタル等による改修用下地処理材として最適。

コンクリートのひび割れ補修や断面修復時に、ポリマーセメントモルタルを使用する場合、CS-21クリアーを使った下地の緻密化を図ることでより効果的な補修ができます。

また材料塗布前後の散水が必要ないため、工程も 短縮。断面修復材等の表面保護材としても使用で きます。

■製品概要

外観: 無色透明·液体 主成分: けい酸ナトリウム 比重(密度): 1.05~1.09(g/cm) pH値: 11.3~12.3

■用途

断面修復時の下地処理材、断面修復材などの表面保護材

断面修復·表面被覆材

CSモルタル#100PS

コンクリート躯体欠損部の断面修復や

コンクリート表面の被覆に威力を発揮するポリマーセメントモルタル。

CSモルタル#100PSは、現場で水と練混ぜるだけで、安定したポリマーセメントモルタルができるプレミックス製品です。

短時間で実用強度が得られます。また、長期の強度発現性も良好です。

適度な可使時間があり、作業性に優れています。

躯体コンクリートとの接着性に優れています。

繊維で補強されており、ひび割れやはく離に対し 十分な抵抗性を発揮します。

物性が長期にわたって安定しており、耐久性、耐

侯性などに優れています。

■製品概要

形態: プレミックスモルタル

主成分:速硬セメント、粉末樹脂(アクリル系)、骨材、繊維、

特殊混和剤

断面修復·表面被覆材

CSモルタル#100P

コンクリート躯体欠損部の断面修復や

コンクリート表面の被覆に威力を発揮するポリマーセメントモルタル。

CSモルタル#100Pは、現場で水と練混ぜるだけで、安定したポリマーセメントモルタルができるプレミックス製品です。

強度発現性が良好で、躯体コンクリートとの接着性に優れています。

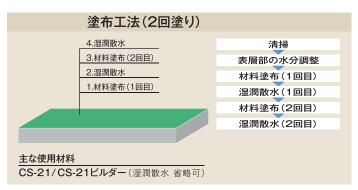
繊維で補強されており、ひび割れやはく離に対し

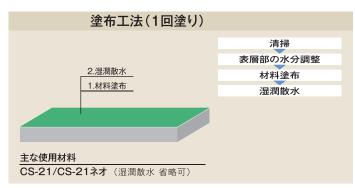
十分な抵抗性を発揮します。

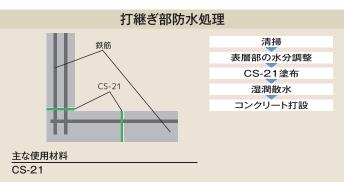
物性が長期にわたって安定しており、耐久性、耐 侯性などに優れています。

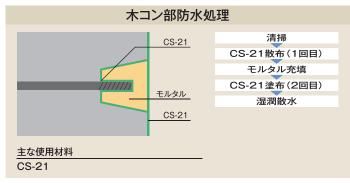
■制具類要

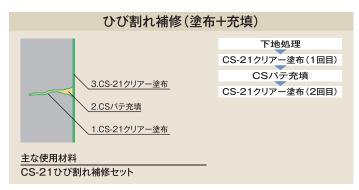
形態: プレミックスモルタル

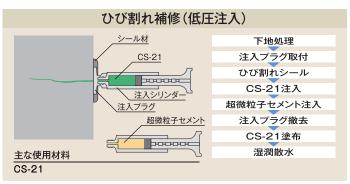

主成分:ポルトランドセメント、粉末樹脂(アクリル系)、骨材、

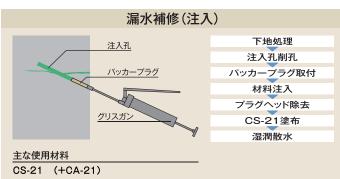

繊維、特殊混和剤

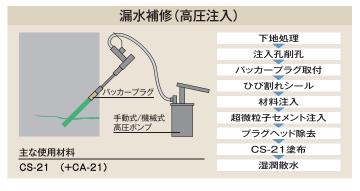


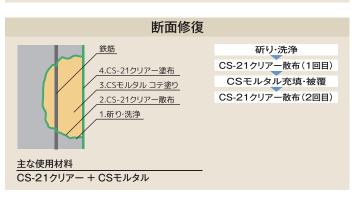

Method


施工方法









Results

全国で30年以上の豊富な施工実績

株式会社 アストン

岡山県岡山市北区矢坂本町14-16 〒700-0075 TEL.086-255-1511 FAX.086-251-3270 https://www.cs21.jp E-mail:aston_2@cs21.jp

※このパンフレットの詳細情報につきましては別途資料をご用意しておりますのでご参照ください。 「製品・工法概要」「技術資料」「施工手順書」「施工実績表」など